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EMA 3702 

Strength of materials Lab rotary Some 

Technical Lecture Notes 

Stress Terms 

Stress is defined as force per unit area. It has the same units as pressure, and in fact 

pressure is one special variety of stress. However, stress is a much more complex 

quantity than pressure because it varies both with direction and with the surface it acts on. 

Compression  
Stress that acts to shorten an object.  

Tension  
Stress that acts to lengthen an object.  

Normal Stress  
Stress that acts perpendicular to a surface. Can be either compressional or 

tensional.  

Shear  
Stress that acts parallel to a surface. It can cause one object to slide over another. 

It also tends to deform originally rectangular objects into parallelograms. The 

most general definition is that shear acts to change the angles in an object.  

Hydrostatic  
Stress (usually compressional) that is uniform in all directions. A scuba diver 

experiences hydrostatic stress. Stress in the earth is nearly hydrostatic. The term 

for uniform stress in the earth is lithostatic.  

Directed Stress  
Stress that varies with direction. Stress under a stone slab is directed; there is a 

force in one direction but no counteracting forces perpendicular to it. This is why 

a person under a thick slab gets squashed but a scuba diver under the same 

pressure doesn't. The scuba diver feels the same force in all directions.  

We only see the results of stress as it deforms materials. Even if we were to use a strain 

gauge to measure in-situ stress in the materials, we would not measure the stress itself. 

We would measure the deformation of the strain gauge (that's why it's called a "strain 

gauge") and use that to infer the stress. 

Strain Terms 

Strain is defined as the amount of deformation an object experiences compared to its 

original size and shape. For example, if a block 10 cm on a side is deformed so that it 

becomes 9 cm long, the strain is (10-9)/10 or 0.1 (sometimes expressed in percent, in this 

case 10 percent.) Note that strain is dimensionless.       
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ε= (δL)/L 

Longitudinal or Linear Strain  
Strain that changes the length of a line without changing its direction. Can be 

either compressional or tensional.  

Compression  
Longitudinal strain that shortens an object.  

Tension  
Longitudinal strain that lengthens an object.  

Shear  
Strain that changes the angles of an object. Shear causes lines to rotate.  

Infinitesimal Strain  
Strain that is tiny, a few percent or less. Allows a number of useful mathematical 

simplifications and approximations.  

Finite Strain  
Strain larger than a few percent. Requires a more complicated mathematical 

treatment than infinitesimal strain.  

Homogeneous Strain  
Uniform strain. Straight lines in the original object remain straight. Parallel lines 

remain parallel. Circles deform to ellipses. Note that this definition rules out 

folding, since an originally straight layer has to remain straight.  

Inhomogeneous Strain  
How real geology behaves. Deformation varies from place to place. Lines may 

bend and do not necessarily remain parallel.  

Terms for Behavior of Materials 

Elastic  
Material deforms under stress but returns to its original size and shape when the 

stress is released. There is no permanent deformation. Some elastic strain, like in 

a rubber band, can be large, but in rocks it is usually small enough to be 

considered infinitesimal.  

Brittle  
Material deforms by fracturing. Glass is brittle. Rocks are typically brittle at low 

temperatures and pressures.  

Ductile  
Material deforms without breaking. Metals are ductile. Many materials show both 

types of behavior. They may deform in a ductile manner if deformed slowly, but 

fracture if deformed too quickly or too much. Rocks are typically ductile at high 

temperatures or pressures.  

Viscous  
Materials that deform steadily under stress. Purely viscous materials like liquids 

deform under even the smallest stress. Rocks may behave like viscous materials 

under high temperature and pressure.  

Plastic  
Material does not flow until a threshold stress has been exceeded.  
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Viscoelastic  
Combines elastic and viscous behavior. Models of glacio-isostasy frequently 

assume a viscoelastic earth: the crust flexes elastically and the underlying mantle 

flows viscously.  

 

Beams  

 
A beam is a structural member which carries loads. These loads are most often 

perpendicular to its longitudinal axis, but they can be of any geometry. A beam 

supporting any load develops internal stresses to resist applied loads. These internal 

stresses are bending stresses, shearing stresses, and normal stresses.  

Beam types are determined by method of support, not by method of loading. Below are 

three types of beams that will be investigated in this course: 

 

1. Simple Support Beam:   2. Cantilever Beam:  

3. Indeterminate Statically 

Beam Support  

 
The first two types are statically determinate, meaning that the reactions, shears and 

moments can be found by the laws of statics alone. Continuous beams are statically 

indeterminate. The internal forces of these beams cannot be found using the laws of 

statics alone. Early structures were designed to be statically determinate because 

simple analytical methods for the accurate structural analysis of indeterminate 

structures were not developed until the first part of this century. A number of 

formulas have been derived to simplify analysis of indeterminate beams. 
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Beam Loading Conditions: 

 

 

 

The two beam loading conditions that either occur separately, or in some combination, 

are: 

A. Concentrated Load 

B. Distributed Laod 

 

CONCENTRATED 
Either a force or a moment can be applied as a concentrated load. Both are applied at a 

single point along the axis of a beam. These loads are shown as a "jump" in the shear or 

moment diagrams. The point of application for such a load is indicated in the diagram 

above. Note that this is NOT a hinge! It is a point of application. This could be point at 

which a railing is attached to a bridge, or a lamppost on the same.  

DISTRIBUTED 
Distributed loads can be uniformly or non-uniformly distributed. Both types are 

commonly found on all kinds of structures. Distributed loads are shown as an angle or 

curve in the shear or moment diagram. A uniformly distributed load can evolve into a one 

with unevenly uniformly distributed load (snow melting to ice at the edge of a roof), but 

are normally assumed to act as given. These loads are often replaced by a singular 

resultant force in order to simplify the structural analysis. 

Introduction Beam Design:  

Normally a beam is analyzed to obtain the maximum stress and this is compared 
to the material strength to determine the design safety margin.  It is also normally 
required to calculate the deflection on the beam under the maximum expected 
load.  The determination of the maximum stress results from producing the shear 
and bending moment diagrams.   To facilitate this work the first stage is normally 
to determine all of the external loads. 

Nomenclature 

e = strain  

σ = stress (N/m2) 

E = Young's Modulus = σ /e (N/m2) 

y = distance of surface from neutral surface (m). 

R = Radius of neutral axis (m). 

I = Moment of Inertia (m4 - more normally cm4)  

Z = section modulus = I/ymax (m
3 - more normally cm3) 

M = Moment (Nm) 

w = Distributed load on beam (kg/m) or (N/m as force units)  
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W = total load on beam (kg ) or (N as force units) 

F= Concentrated force on beam (N) 

S= Shear Force on Section (N) 

L = length of beam (m) 

x = distance along beam (m) 

Calculation of external forces 

To allow determination of all of the external loads a free-body diagram is 

construction with all of the loads and supports replaced by their equivalent 

forces.  A typical free-body diagram is shown below. 

 

The unknown forces (generally the support reactions) are then determined using the 

equations for plane static equilibrium.  

 

For example considering the simple beam above the reaction R2 is determined by 

Summing the moments about R1 to zero  

R2. L - W.a = 0 Therefore R2 = W.a / L 

R1 is determined by summing the vertical forces to 0  

W - R1 - R2 = 0 Therefore R1 = W - R2 

 
Shear and Bending Moment Diagram 

The shear force diagram indicates the shear force withstood by the beam section 

along the length of the beam. 

The bending moment diagram indicates the bending moment withstood by the beam 

section along the length of the beam. 

It is normal practice to produce a free body diagram with the shear diagram and the 

bending moment diagram position below 

 

For simply supported beams the reactions are generally simple forces.  When the 
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beam is built-in the free body diagram will show the relevant support point as a 

reaction force and a reaction moment.... 

Sign Convention 

The sign convention used for shear force diagrams and bending moments is only 

important in that it should be used consistently throughout a project.  The sign 

convention used on this page is as below. 

 

Typical Diagrams 

A shear force diagram is simply constructed by moving a section along the beam from 

(say) the left origin and summing the forces to the left of the section.   The equilibrium 

condition states that the forces on either side of a section balance and therefore the 

resisting shear force of the section is obtained by this simple operation 

 

The bending moment diagram is obtained in the same way except that the moment is the 

sum of the product of each force and its distance(x) from the section.  Distributed loads 

are calculated buy summing the product of the total force (to the left of the section) and 

the distance(x) of the centroid of the distributed load. 

 

The sketches below show simply supported beams with on concentrated force. 

 

The sketches below show Cantilever beams with three different load combinations. 
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Note: The force shown if based on loads (weights) would need to be converted to 

force units i.e. 50kg = 50x9,81(g) = 490 N. 

Shear Force Moment Relationship 

Consider a short length of a beam under a distributed load separated by a distance 

δx.  

 

The bending moment at section AD is M and the shear force is S.  The bending 

moment at BC = M + δM and the shear force is S + δS. 

 

The equations for equilibrium in 2 dimensions results in the equations.. Forces. 

 

S - w.δx = S + δS 

Therefore making δx infinitely small then.. dS /dx = - w 

Moments.. Taking moments about C 

M + Sδx - M - δM - w(δx)2 /2 = 0 

Therefore making δx infinitely small then.. dM /dx = S 

Therefore putting the relationships into integral form.  
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The integral (Area) of the shear diagram between any limits results in the change of 

the shearing force between these limits and the integral of the Shear Force diagram 

between limits results in the change in bending moment... 



Dr. S. E. Beladi, PE EMA 3702 Lab  P a g e  | 9 

 Theoritical Back Grounds 

Torsion (mechanics) 

 

  

In solid mechanics, torsion is the twisting of an object due to an applied torque. In circular 

sections, the resultant shearing stress is perpendicular to the radius. 

For solid or hollow shafts of uniform circular cross-section and constant wall thickness, the 

torsion relations are: 

 

where: 

 R is the outer radius of the shaft. 

 τ is the maximum shear stress at the outer surface. 

http://en.wikipedia.org/wiki/Solid_mechanics
http://en.wikipedia.org/wiki/Torque
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Shear_stress
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 φ is the angle of twist in radians. 

 T is the torque (N·m or ft·lbf). 

 ℓ is the length of the object the torque is being applied to or over. 

 G is the shear modulus or more commonly the modulus of rigidity and is usually 

given in gigapascals (GPa), lbf/in2 (psi), or lbf/ft2. 

 J is the torsion constant for the section . It is identical to the polar moment of 

inertia for a round shaft or concentric tube only. For other shapes J must be 

determined by other means. For solid shafts the membrane analogy is useful, and 

for thin walled tubes of arbitrary shape the shear flow approximation is fairly 

good, if the section is not re-entrant. For thick walled tubes of arbitrary shape 

there is no simple solution, and FEA may be the best method. 

 the product GJ is called the torsional rigidity. 

The shear stress at a point within a shaft is: 

 

where: 

 r is the distance from the center of rotation 

Note that the highest shear stress is at the point where the radius is maximum, the surface of the 

shaft. High stresses at the surface may be compounded by stress concentrations such as rough 

spots. Thus, shafts for use in high torsion are polished to a fine surface finish to reduce the 

maximum stress in the shaft and increase its service life. 

The angle of twist can be found by using: 

 

Polar moment of inertia 

The polar moment of inertia for a solid shaft is: 

 

where r is the radius of the object. 

The polar moment of inertia for a pipe is: 

 

where the o and i subscripts stand for the outer and inner radius of the pipe. 

http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Newton_metre
http://en.wikipedia.org/wiki/Foot-pound_force
http://en.wikipedia.org/wiki/Modulus_of_rigidity
http://en.wikipedia.org/wiki/Gigapascal
http://en.wikipedia.org/wiki/Pounds_per_square_inch
http://en.wikipedia.org/wiki/Torsion_constant
http://en.wikipedia.org/wiki/Polar_moment_of_inertia
http://en.wikipedia.org/wiki/Polar_moment_of_inertia
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Torsional_rigidity
http://en.wikipedia.org/wiki/Stress_concentrations
http://en.wikipedia.org/wiki/Radius
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For a thin cylinder 

J = 2π R3 t 

where R is the average of the outer and inner radius and t is the wall thickness. 

Failure mode 

The shear stress in the shaft may be resolved into principal stresses via Mohr's circle. If the shaft 

is loaded only in torsion then one of the principal stresses will be in tension and the other in 

compression. These stresses are oriented at a 45 degree helical angle around the shaft. If the shaft 

is made of brittle material then the shaft will fail by a crack initiating at the surface and 

propagating through to the core of the shaft fracturing in a 45 degree angle helical shape. This is 

often demonstrated by twisting a piece of blackboard chalk between one's fingers. 

Deflection of Beams 

The deformation of a beam is usually expressed in terms of its deflection from its original 

unloaded position. The deflection is measured from the original neutral surface of the beam to the 

neutral surface of the deformed beam. The configuration assumed by the deformed neutral 

surface is known as the elastic curve of the beam. 

  

 

  

Methods of Determining Beam Deflections 

Numerous methods are available for the determination of beam deflections. These methods 

include: 

1. Double-integration method 

2. Area-moment method 

3. Strain-energy method (Castigliano’s Theorem) 

http://en.wikipedia.org/wiki/Principal_stress
http://en.wikipedia.org/wiki/Mohr%27s_circle
http://en.wikipedia.org/wiki/Brittle
http://www.mathalino.com/reviewer/mechanics-and-strength-of-materials/double-integration-method-beam-deflections
http://www.mathalino.com/reviewer/mechanics-and-strength-of-materials/area-moment-method-beam-deflections
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4. Three-moment equation 

5. Conjugate-beam method 

6. Method of superposition 

7. Virtual work method 

Of these methods, the first two are the ones that are commonly used. 

Introduction  

The stress, strain, dimension, curvature, elasticity, are all related, under certain 

assumption, by the theory of simple bending.   This theory relates to beam flexure 

resulting from couples applied to the beam without consideration of the shearing 

forces. 

 
Superposition Principle  

The superposition principle is one of the most important tools for solving beam 

loading problems allowing simplification of very complicated design problems.. 

 

For beams subjected to several loads of different types the resulting shear force, 

bending moment, slope and deflection can be found at any location by summing the 

effects due to each load acting separately to the other loads. 

 

 
Nomenclature 

e = strain 

E = Young's Modulus = σ /e (N/m2) 

y = distance of surface from neutral surface (m). 

R = Radius of neutral axis (m). 

I = Moment of Inertia (m4 - more normally cm4)  

Z = section modulus = I/ymax(m3 - more normally cm3) 

F = Force (N) 

x = Distance along beam 

δ = deflection (m) 

θ = Slope (radians) 

σ = stress (N/m2) 

 

 
Simple Bending  

A straight bar of homogeneous material is subject to only a moment at one end and 

an equal and opposite moment at the other end...  
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Assumptions  

The beam is symmetrical about Y-Y 

The traverse plane sections remain plane and normal to the longitudinal fibres after 

bending (Beroulli's assumption) 

The fixed relationship between stress and strain (Young's Modulus)for the beam 

material is the same for tension and compression ( σ= E.e )  

 

 

Consider two section very close together (AB and CD). 

After bending the sections will be at A'B' and C'D' and are no longer parallel.   AC 

will have extended to A'C' and BD will have compressed to B'D' 

The line EF will be located such that it will not change in length.   This surface is 

called neutral surface and its intersection with Z_Z is called the neutral axis 

The development lines of A'B' and C'D' intersect at a point 0 at an angle of θ 

radians and the radius of E'F' = R 

Let y be the distance(E'G') of any layer H'G' originally parallel to EF..Then 

H'G'/E'F' =(R+y)θ /R θ = (R+y)/R  

And the strain e at layer H'G' = 

e = (H'G'- HG) / HG = (H'G'- HG) / EF = [(R+y)θ - R θ] /R θ = y /R 

The accepted relationship between stress and strain is σ= E.e Therefore 

σ = E.e = E. y /R  

σ / E = y / R  

Therefore, for the illustrated example, the tensile stress is directly related to the 

distance above the neutral axis.   The compressive stress is also directly related to 

the distance below the neutral axis.   Assuming E is the same for compression and 

tension the relationship is the same. 

 

As the beam is in static equilibrium and is only subject to moments (no vertical 

shear forces) the forces across the section (AB) are entirely longitudinal and the 

total compressive forces must balance the total tensile forces.  The internal couple 

resulting from the sum of ( σ.dA .y) over the whole section must equal the 

externally applied moment. 
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This can only be correct if Σ(yδa) or Σ(y.z.δy) is the moment of area of the section 

about the neutral axis.  This can only be zero if the axis passes through the centre of 

gravity (centroid) of the section. 

 

The internal couple resulting from the sum of ( σ.dA .y) over the whole section 

must equal the externally applied moment.  Therefore the couple of the force 

resulting from the stress on each area when totalled over the whole area will equal 

the applied moment  

 

From the above the following important simple beam bending relationship results 

 

 

It is clear from above that a simple beam subject to bending generates a maximum 

stress at the surface furthest away from the neutral axis.  For sections symmetrical 

about Z-Z the maximum compressive and tensile stress is equal. 

σmax = ymax. M / I 

The factor I /ymax is given the name section Modulus (Z) and therefore 
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σmax = M / Z 

Values of Z are provided in the tables showing the properties of standard steel 

sections 

 

 
Deflection of Beams 

Below is shown the arc of the neutral axis of a beam subject to bending. 

 

For small angle dy/dx = tan θ = θ 

The curvature of a beam is identified as dθ /ds = 1/R 

In the figure δθ is small and δx; is practically = δs; i.e ds /dx =1 

 

From this simple approximation the following relationships are derived.  

 

Integrating between selected limits. 

 

The deflection between limits is obtained by further integration. 

 

It has been proved ref Shear - Bending that dM/dx = S and dS/dx = -w = d2M /dx 

Where S = the shear force M is the moment and w is the distributed load /unit 

length of beam.   therefore 

http://www.roymech.co.uk/Useful_Tables/Beams/Shear_Bending.html#shearbend
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If w is constant or a integratatable function of x then this relationship can be used to 

arrive at general expressions for S, M, dy/dx, or y by progressive integrations with a 

constant of integration being added at each stage.  The properties of the supports or 

fixings may be used to determine the constants. (x= 0 - simply supported, dx/dy = 0 

fixed end etc )  

 

In a similar manner if an expression for the bending moment is known then the 

slope and deflection can be obtained at any point x by single and double integration 

of the relationship and applying suitable constants of integration. 

 

Singularity functions can be used for determining the values when the loading a not 

simple ref Singularity Functions 

 

 

Example - Cantilever beam 

Consider a cantilever beam (uniform section) with a single concentrated load at the 

end.  At the fixed end x = 0, dy = 0 , dy/dx = 0 

 

From the equilibrium balance ..At the support there is a resisting moment -FL and a 

vertical upward force F. 

At any point x along the beam there is a moment F(x - L) = Mx = EI d 2y /dx 2 

 

Example - Simply supported beam 

http://www.roymech.co.uk/Useful_Tables/Beams/Singularity.html
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Consider a simply supported uniform section beam with a single load F at the 

centre.    The beam will be deflect symmetrically about the centre line with 0 slope 

(dy/dx) at the centre line.   It is convenient to select the origin at the centre line. 

 

 

 

 
Moment Area Method  

This is a method of determining the change in slope or the deflection between two 

points on a beam.  It is expressed as two theorems... 

 

Theorem 1 

If A and B are two points on a beam the change in angle (radians) between the 

tangent at A and the tangent at B is equal to the area of the bending moment 

diagram between the points divided by the relevant value of EI (the flexural rigidity 

constant).  

 

Theorem 2 

If A and B are two points on a beam the displacement of B relative to the tangent of 

the beam at A is equal to the moment of the area of the bending moment diagram 

between A and B about the ordinate through B divided by the relevant value of EI 

(the flexural rigidity constant). 

Examples ..Two simple examples are provide below to illustrate these theorems 

Example 1) Determine the deflection and slope of a cantilever as shown.. 
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The bending moment at A = MA = FL 

The area of the bending moment diagram AM = F.L2 /2 

The distance to the centroid of the BM diagram from B= xc = 2L/3 

The deflection of B = y b = A M.x c /EI = F.L 3 /3EI 

The slope at B relative to the tan at A = θ b =AM /EI = FL2 /2EI 

 

Example 2) Determine the central deflection and end slopes of the simply supported 

beam as shown.. 

E = 210 GPa ......I = 834 cm4...... EI = 1,7514. 10 6Nm 2 

 

A1 = 10.1,8.1,8/2 = 16,2kNm 

A2 = 10.1,8.2 = 36kNm 

A2 = 10.1,8.2 = 36kNm 

A1 = 10.1,8.1,8/2 = 16,2kNm 

x1 = Centroid of A1 = (2/3).1,8 = 1,2 

x2 = Centroid of A2 = 1,8 + 1 = 2,8 

x3 = Centroid of A3 = 1,8 + 1 = 2,8 

x4 = Centroid of A4 = (2/3).1,8 = 1,2 
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The slope at A is given by the area of the moment diagram between A and C 

divided by EI.  

θA = (A1 + A2) /EI   =   (16,2+36).10 3 / (1,7514. 10 6) 

=  0,029rads   =   1,7 degrees 

The deflection at the centre (C) is equal to the deviation of the point A above a line 

that is tangent to C.  

Moments must therefore be taken about the deviation line at A. 

δC = (AM.xM) /EI   =   (A1 x1 +A2 x2) / EI   =   120,24.10 3/ (1,7514. 10 6) 

=   0,0686m = 68,6mm 

 

Mohr's Circle 

 
 

Introduced by Otto Mohr in 1882, Mohr's Circle illustrates principal stresses and stress 

transformations via a graphical format,  

 

The two principal stresses are shown in red, and the maximum shear stress is shown in orange. 

Recall that the normal stresses equal the principal stresses when the stress element is aligned with 

the principal directions, and the shear stress equals the maximum shear stress when the stress 

element is rotated 45° away from the principal directions.  

As the stress element is rotated away from the principal (or maximum shear) directions, the 

normal and shear stress components will always lie on Mohr's Circle.  

Mohr's Circle was the leading tool used to visualize relationships between normal and shear 

stresses, and to estimate the maximum stresses, before hand-held calculators became popular. 

Even today, Mohr's Circle is still widely used by engineers all over the world.  

 

Derivation of Mohr's Circle 

 
 

To establish Mohr's Circle, we first recall the stress transformation formulas for plane stress at a 

given location,  

http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress.cfm#Principal
http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress.cfm#transform
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Using a basic trigonometric relation (cos22  + sin22  = 1) to combine the two above equations 

we have,  

 

This is the equation of a circle, plotted on a graph where the abscissa is the normal stress and the 

ordinate is the shear stress. This is easier to see if we interpret x and y as being the two 

principal stresses, and xy as being the maximum shear stress. Then we can define the average 

stress, avg, and a "radius" R (which is just equal to the maximum shear stress),  

       

The circle equation above now takes on a more familiar form,  

 

The circle is centered at the average stress value, and has a radius R equal to the maximum shear 

stress, as shown in the figure below,  

 

 

 

http://www.efunda.com/math/trig_functions/trig_relation.cfm
http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress.cfm#Principal

